WAPA COTP Series Capacitor Bank Replacement

EMTP Study

Leopoldo G. Gallegos Jr. Electrical Engineer Protection

• Background & Objective:

- The California Oregon Transmission Project (COTP) Capacitor Replacement Project (the "Project") is being implemented because the fixed series capacitor banks (FSCB) on the COTP are fast approaching their 30-year operational life.
- The Project will install a new set of modern fixed series capacitors, associated relays and equipment, including the motor-operated disconnects (MOD).
- It will replace all the existing 525 kV FSCB with new but the same identical capacitor sizes, ratings, two-switching step or segment configuration and maintain the same line series compensation level as the existing one.

System Model:

The 340-mile 525-kV transmission system that will be represented in the EMTP model will consist of the boundary equivalent 525-kV WAPA lines from Tracy – Olinda North. Tracy-Maxwell-Olinda line section is modeled in detail using EMTP's frequency dependent line model option. At a later point in time the system from Tracy to Los Banos and Tracy to Tesla and Olinda to Captain Jack will be modeled using the frequency dependent line re-build option. Bus work at Tracy and Olinda will be modeled.

Figure 1: System Boundary Equivalent

Purpose of EMTP Simulation:

The EMTP study will have simulations run to determine the energy requirements for the MOV protective devices across the series capacitors at Tracy, Maxwell, and Olinda substations.

The basis for selecting the MOV shall have adequate capability to avoid by-passing the MOV for all external faults with fault durations of 5 cycles or less, also the series capacitors shall not be by-passed during maximum swing current conditions and the protective level of the MOV shall not exceed 2.2 per unit.

Figure 2: EMTP System Boundary Equivalent Model

Figure 3: Tracy Substation modeled in EMTP:

Stray Capacitance Approximation

Table 1: Stray Capacitance Values used in model from tables in Annex B of IEEE C37.011-2019

Location		Steam Turbine (pf)	Surge Arrester (pf)	Outdoor Bushing (pf)	Instrument XFMR (pf)	CCVT (pf)	BUS (pf)	Circuit Breaker (pf)	Disconnect Switches (pf)	Misc (pf)	XFMR	Total (pf)	Total (nf)
A2	VT1A-JT3A,B	0	0	150	600	5825	3537	175	300	50	0	10,637	10.637
B2	VT2A-JT4A,B	0	0	150	600	5825	3537	175	300	50	0	10,637	10.637
A3	JT3A-JT4A	0	0	150	300	0	900	175	300	50	0	1,875	1.875
B3	JT3B-JT4B	0	0	150	300	0	900	175	300	50	0	1,875	1.875
A4	Bus-Breaker	0	0	300	600	0	2700	250	250	50	0	4,150	4.15
B4	Bus-Breaker	0	0	300	600	0	2700	250	250	50	0	4,150	4.15
5	JT6B-JT6C	0	100	600	300	5825	900	1400	1200	150	0	10,475	10.475
6	JT6C-VT6A	0	100	600	300	5825	900	1400	1200	150	0	10,475	10.475

Moving North from Tracy along Tracy to Maxwell is the Line Breaker and Series Capacitor Bank.

Figure 4: Tracy Series Capacitor Bank diagram:

Figure 5: Tracy Series Capacitor Bank EMTP model:

Total	Tracy #1	Tracy #2	Maxwell #1	Maxwell #2	Olinda S. #1	Olinda S. #2	Olinda N. #1	Olinda N. #2
Variator	(PT6B)	(PT6A)	(PT1A)	(PT1B)	(PT8B)	(PT8A)	(PT7A)	(PT7B)
Varistor	Varistor	Varistor	Varistor	Varistor	Varistor	Varistor	Varistor	Varistor
Current	Voltage	Voltage	Voltage	Voltage	Voltage	Voltage	Voltage	Voltage
Apk	kV pk	kV pk	kV pk	kV pk	kV pk	kV pk	kV pk	kV pk
200	70.07	108.27	71.54	137.08	70.54	122.02	64.01	115.44
300	70.45	108.85	71.99	137.94	70.94	122.70	64.36	116.08
400	70.72	109.28	72.32	138.61	71.22	123.21	64.62	116.54
500	70.94	109.61	72.59	139.13	71.46	123.63	64.82	116.94
750	71.35	110.24	73.08	140.13	71.91	124.41	65.23	117.67
1000	71.66	110.73	73.47	140.86	72.23	124.98	65.52	118.20
1500	72.11	111.43	74.01	142.13	72.72	125.83	65.95	119.00
2000	72.45	111.95	74.55	143.20	73.08	126.46	66.27	119.58
3000	72.95	112.71	75.36	144.79	73.62	127.40	66.75	120.46
4000	73.32	113.28	75.96	146.01	74.00	128.14	67.10	121.10
5000	73.62	113.75	76.45	146.97	74.41	128.87	67.40	121.77
7500	74.21	114.66	77.36	148.73	75.21	130.27	68.10	123.07
10000	74.76	115.50	78.02	150.02	75.80	131.32	68.64	124.04
15000	75.58	116.78	78.99	152.05	76.70	132.89	69.43	125.51
20000	76.20	117.73	79.80	153.71	77.35	134.01	70.02	126.57
30000	77.11	119.13	81.07	156.34	78.28	135.64	70.86	128.09
40000	77.77	120.14	82.08	158.42	78.98	136.89	71.47	129.23
50000	78.28	120.94	82.93	160.09	79.59	137.99	71.98	130.24

Table 2: Manufacture Provided MOV VI curves

Segment 1 Ratings:

$$\begin{split} &I_{RATED} \coloneqq 2850 \ \textbf{A} \quad \text{Arms} \\ &V_{RATED} \coloneqq \left(I_{RATED} \cdot 9 \ \textbf{\Omega}\right) = \left(25.65 \cdot 10^3\right) \ \textbf{V} \quad \text{Vrms} \\ &V_{CREST} \coloneqq V_{RATED} \cdot \sqrt{2} = \left(36.275 \cdot 10^3\right) \ \textbf{V} \quad \text{Vpeak} \\ &MCOV \coloneqq 1.1 \cdot V_{RATED} = \left(28.215 \cdot 10^3\right) \ \textbf{V} \quad \text{Maximum Continuous Operating Voltage} \\ &MCOV_{Peak} \coloneqq MCOV \cdot \sqrt{2} = \left(39.902 \cdot 10^3\right) \ \textbf{V} \\ &PLV \coloneqq V_{CREST} \cdot 2.2 = \left(79.804 \cdot 10^3\right) \ \textbf{V} \quad \text{Protective Level} \end{split}$$

Current-Voltage characteristic											
Desired \	Voltage rating 25700										
Data \	Voltage rating 25700	V RMS									
	Current (A) - Voltage (V) matrix										
200 300 400 500 750 1000 1500 2000 3000 4000 5000 7500	70070 70450 70720 70940 71350 71660 72110 72450 72950 73320 73620 74210			Voltage multiplier 1 Current multiplier 1 Minimum current value 0.001							
<		>									

Figure 6: VI input for EMTP's ZnO Data Funtion tool

Below is the EMTP test circuit that was used to compare EMTP's modeled arrestor with manufactures MOV VI values. The curve below in figure 4 shows that EMTP's model is within an acceptable range.

Figure 7: Zno Test Circuit and MPLOT Verification

 v_E

Line Modeling Using Standard Conductor Data:

Figure 8: Archived Tower Geometry and EMTP's Line Data Tool

Line Modeling Using EMTP's Line Rebuild Tool.

					section leng	jth				
	Enter ASPEN da	ata in per unit, 10	0 MVA base:		(miles)					
	B1=	0.00001	X1=	0.00023						
sec 1	B0 =	0.00018	X0 =	38000.0	1.192					
	P1-	0.00074	 	0.01675						
sec 2	D0	0.00074	01=	0.01675	87.247					
	HU=	0.01311	X0 =	0.06276						
sec 3	R1=	0.00019	X1=	0.00452	22,703					
	R0 =	0.00415	X0 =	0.01476						
A	B1=	0.00003	X1=	0.00060	2.026					
560.4	B0 =	0.00058	X0 =	0.00182	3.026					
_	B1=		X1=							
sec 5	B0 -		X0 -		1					
	P1-	0.00097	- NV -	0.02240						
TOTAL		0.00037	01=	0.02210	114.168					
	HU=	0.01802	XU=	0.08020						
		p.u. p	er mile at eacl	h end						
	B1=	1.3366E-03	B2 =	1.3366E-03	(Y/2)					
	B10 -	8.8300E-04	B20 -	8.8300E-04	(11/2)					
	0.01	0.00002.01	total at each	and	(112)					
	D1	1 50005-01	Do	150005-01	(94100)					
	BIE	1.5260E-01	B2=	1.5260E-01	[172]					
	B10 =	1.0081E-01	B20 =	1.0081E-01	[Y/2]					
	calculated prima	ary values in ohm	IS							
	B1=	2.67356	X1=	60.91313						
	B0 =	49.66763	X0 =	221.05125						
	110-	10.00100	110 -							
	a a lacela ba al a simo a		a lan ila							
	calculated prima	irg values in onin	Ismile							
	H1=	2.24292	X1=	51.10161						
	R0 =	41.66747	X0 =	185.44568						
	calculated ohms	s/mile and mH/m	nile at 60 Hz			sh	unt admittance	e in per unit	(Y/2)	
		0/mile		mH/mile		B10 =	1.0081E-01	B20 =	1.0081E-01	
	B0 -	4166747	X0 -	49190994		B1-	15260E-01	B2 -	15260E-01	
	P1-	2 24292	¥1-	125 55124		0.14	1.02002-01	02-	1.02002-01	
	F11-	2.242.32	01-	100.00124		a al sud ab a d a		- 01	()	
						calculated p	rimary values	in Siemens	(mnos)	
	line length =	114.168				B10 =	3.6575E-05	B20 =	3.6575E-05	
	Conduc	tor Data				B1=	5.5365E-05	B2 =	5.5365E-05	
	Number o	of Phases	3							
	B zero segue	ace [Obm/mile]	4166747			Siemens (m	hos)/mile			
		anco [mH/milo]	49190994			B10 -	3.0684E-05	B20 -	3.0684E-05	
	Case	ence [mmmme]	101.00001			D1-	4.0447E.0E	D20-	4 0447E 0E	
	C and a sequence	uence [ormite]	100705-01			DI-	4.04472-03	D2 -	4.04472-00	
	L Zero sequen	ce [microf/mile]	1.6278E-01							
	R positive see	quence [Ohm/mile]	2.24292			calculated v	ialues in uF /mi	lle		
	L positive se	quence [mH/mile]	135.55124			B10 =	8.1391E-02	B20 =	8.1391E-02	
	G positive 🕫	equence [S/mile]	0			B1=	1.2321E-01	B2 =	1.2321E-01	
	C positive sequ	uence [microF/mile	2.4641E-01							
	Frequer	noų [Hz]	60			calculated v	alues in uF/mi	ile	10 charge	amp/mile
	DC resistance	Ohms/mile1	0.0000			B10 total =	1.6278E-01		22.1724	18.6010
						B1total -	2 4641E-01			
						Directar-			lioharge	amolmila
		kin a							ap Ecop	amprime 30.4E74
	records for (Wea	iking							33.0633	20.1071
	tweak		1.0000	1.0000						
		ASPEN	EMTP	% error						
	B1	2.674	2.81	5.10						
	X1	60.913	61.45	0.88						
	B0	49.668	35,93	27.66						
	X0	221.051	237.87	7.61						
	total V arres	221.001	201.01	41.25						
	total A error			41.20						

Figure 9: Excel Spread Sheet to go from ASPEN OneLiner to EMTP Line Rebuild

Line Modeling Using Line Rebuild Tool (Cont.):

Figure 10: Line Rebuild input and WAPA's test circuit

MOV Energy dissipation:

Below is the method for obtaining the duty cycle and maximum continuous operating voltage of a surge arrester that will withstand a continuous voltage corresponding to the 4,300 Amps 30 minute rating of the capacitor bank:

 $I_{E_TCY_1} = 4300 A$ Emergency Rating of Tracy Segment 1 Capacitor Bank

 $V_{TCY_1_MCOV} \coloneqq I_{E_TCY_1} \cdot 9 \ \boldsymbol{\Omega} = (38.7 \cdot 10^3) \ \boldsymbol{V}$

The corresponding MCOV at 38.7-kV from Table 1 of ANSI C62.11 is 39-kV with a duty cycle of 48-kV. This rating matches the existing MOV, therefore the existing MOV VI curve provided by GE was used as a starting point in the EMTP simulation to find the energy dissipated during various faults. The main 2 faults of concern are an internal line fault and and external line fault. If the fault occurs within the section of transmission line where the series cap is located, it is referred to as an internal fault. Anywhere the fault occurs outside of that is an external fault. An internal fault would result in fast or instantaneous clearing time and an external fault in COTP's case will also have high-speed tripping 5 cycles.

External 3 phase to ground fault 5 cycles (83 ms) on Tracy - Maxwell 525-kV transmission line. Bypass breaker logic disabled. The case simulated is an external fault on the Line side of the Tracy series capacitor bank. All COTP series caps are included and the COTP reactor banks are excluded.

Fault occurs at 100ms Line Breakers clear the fault at 183ms

Figure 11: Phase A current through segment 1 of Tracy series capacitor bank

Figure 12: Phase A current through segment 1 of Tracy MOV

Figure 13: Phase A voltage across segment 1 of Tracy series capacitor bank

Figure 14: Phase A voltage across segment 1 of Tracy MOV

Figure 14: Energy dissipation of segment 1 Tracy MOV Approximately 129MJ

Simulation with Bypass logic enabled

Figure 15: Existing Tracy series capacitor bank protection for triggered air gap & bypass logic

Figure 17: Phase A current through segment 1 of Tracy MOV with Bypass logic enabled

Figure 20: Energy dissipation of segment 1 Tracy MOV Approximately 5.3MJ with bypass logic enabled.

Summary:

- The methods and model presented will be used to evaluate the MOV energy dissipation at the other 3 substation in the WAPA COTP corridor.
- The data obtained will be provided to the manufacture to provide the best fitting MOV and Series CAP protection.

Questions?

Leopoldo G. Gallegos Jr. gallegos@wapa.gov

www.wapa.gov

in

@westernareapowr

western-area-power-administration

WesternAreaPower1

westernareapower

wapa.gov

